REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC."

Luijsterburg MS, Goedhart J, Moser J, Kool H, Geverts B, Houtsmuller AB, Mullenders LH, Vermeulen W, van Driel R



Published Aug. 1, 2007 in J Cell Sci volume 120 .

Pubmed ID: 17635991

Abstract:
Damage DNA binding protein 2 (DDB2) has a high affinity for UV-damaged DNA and has been implicated in the initial steps of global genome nucleotide excision repair (NER) in mammals. DDB2 binds to CUL4A and forms an E3 ubiquitin ligase. In this study, we have analyzed the properties of DDB2 and CUL4A in vivo. The majority of DDB2 and CUL4A diffuse in the nucleus with a diffusion rate consistent with a high molecular mass complex. Essentially all DDB2 binds to UV-induced DNA damage, where each molecule resides for approximately 2 minutes. After the induction of DNA damage, DDB2 is proteolytically degraded with a half-life that is two orders of magnitude larger than its residence time on a DNA lesion. This indicates that binding to damaged DNA is not the primary trigger for DDB2 breakdown. The bulk of DDB2 binds to and dissociates from DNA lesions independently of damage-recognition protein XPC. Moreover, the DDB2-containing E3 ubiquitin ligase is bound to many more damaged sites than XPC, suggesting that there is little physical interaction between the two proteins. We propose a scenario in which DDB2 prepares UV-damaged chromatin for assembly of the NER complex.


This publication refers to following REPAIRtoire entries:

Genes
Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.