Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"A proteomic strategy for gaining insights into protein sumoylation in yeast."

Denison C, Rudner AD, Gerber SA, Bakalarski CE, Moazed D, Gygi SP



Published March 1, 2005 in Mol Cell Proteomics volume 4 .

Pubmed ID: 15542864

Abstract:
Sumoylation represents a vital post-translational modification that pervades numerous aspects of cell biology, including protein targeting, transcriptional regulation, signal transduction, and cell division. However, despite its broad reaching effects, most biological outcomes of protein sumoylation remain poorly understood. In an effort to provide further insight into this complex process, a proteomics approach was undertaken to identify the targets of sumoylation en mass. Specifically, SUMO-conjugated proteins were isolated by a double-affinity purification procedure from a Saccharomyces cerevisiae strain engineered to express tagged SUMO. The components of the isolated protein mixture were then identified by subsequent LC-MS/MS analysis using an LTQ FT mass spectrometer. In this manner, 159 candidate sumoylated proteins were identified by two or more peptides. Furthermore, the high accuracy of the instrument, combined with stringent search criteria, enabled the identification of an additional 92 putative candidates by only one peptide. The validity of this proteomics approach was confirmed by performing subsequent Western blot experiments for numerous proteins and determining the actual sumoylation sites for several other substrates. These data combine with recent works to further our understanding of the breadth and impact of protein sumoylation in a diverse array of biological processes.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.