REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"A link between secretion and pre-mRNA processing defects in Saccharomyces cerevisiae and the identification of a novel splicing gene, RSE1."

Chen EJ, Frand AR, Chitouras E, Kaiser CA



Published Dec. 1, 1998 in Mol Cell Biol volume 18 .

Pubmed ID: 9819400

Abstract:
Secretory proteins in eukaryotic cells are transported to the cell surface via the endoplasmic reticulum (ER) and the Golgi apparatus by membrane-bounded vesicles. We screened a collection of temperature-sensitive mutants of Saccharomyces cerevisiae for defects in ER-to-Golgi transport. Two of the genes identified in this screen were PRP2, which encodes a known pre-mRNA splicing factor, and RSE1, a novel gene that we show to be important for pre-mRNA splicing. Both prp2-13 and rse1-1 mutants accumulate the ER forms of invertase and the vacuolar protease CPY at restrictive temperature. The secretion defect in each mutant can be suppressed by increasing the amount of SAR1, which encodes a small GTPase essential for COPII vesicle formation from the ER, or by deleting the intron from the SAR1 gene. These data indicate that a failure to splice SAR1 pre-mRNA is the specific cause of the secretion defects in prp2-13 and rse1-1. Moreover, these data imply that Sar1p is a limiting component of the ER-to-Golgi transport machinery and suggest a way that secretory pathway function might be coordinated with the amount of gene expression in a cell.


This publication refers to following REPAIRtoire entries:



Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.