REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, and cancer in mice."

Lebel M, Lavoie J, Gaudreault I, Bronsard M, Drouin R



Published May 1, 2003 in Am J Pathol volume 162 .

Pubmed ID: 12707040

Abstract:
Werner syndrome is a rare disorder characterized by the premature onset of a number of age-related diseases. The gene responsible for Werner syndrome encodes a DNA helicase/exonuclease protein. Participation in a replication complex is among the several functions postulated for the WRN protein. The poly(ADP-ribose) polymerase-1 (PARP-1) enzyme, which is known to bind to DNA strand breaks, is also associated with the DNA replication complex. To determine whether Wrn and PARP-1 enzymes act in concert during cell growth, mice with a mutation in the helicase domain of the Wrn gene (Wrn(Deltahel/Deltahel) mice) were crossed to PARP-1-null mice. Both Wrn(Deltahel/Deltahel) and PARP-1-null/Wrn(Deltahel/Deltahel) cohorts developed more neoplasms than wild-type animals. The tumor spectrum was the same between PARP-1-null/Wrn(Deltahel/Deltahel) mice and Wrn mutants. However, PARP-1-null/Wrn(Deltahel/Deltahel) mice developed neoplasms at a younger age. Mouse embryonic fibroblasts derived from such PARP-1-null/Wrn(Deltahel/Deltahel) mice stop dividing abruptly unlike Wrn(Deltahel/Deltahel) or PARP-1-null cells. PARP-1-null/Wrn(Deltahel/Deltahel) fibroblasts were distinguished by an increased frequency of chromatid breaks, complex chromosomal rearrangements, and fragmentation. Finally, experiments have indicated that the PARP-1 enzyme co-immunoprecipitates with the WRN protein in human 293 embryonic kidney cells. These results suggest that Wrn and PARP-1 enzymes may be part of a complex involved in the processing of DNA breaks.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.