REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product."

Wehner EP, Rao E, Brendel M



Published March 1, 1993 in Mol Gen Genet volume 237 .

Pubmed ID: 8483449

Abstract:
A 3.7 kb DNA fragment of yeast chromosome IV has been sequenced that contains the SFA gene which, when present on a multi-copy plasmid in Saccharomyces cerevisiae, confers hyper-resistance to formaldehyde. The open reading frame of SFA is 1158 bp in size and encodes a polypeptide of 386 amino acids. The predicted protein shows strong homologies to several mammalian alcohol dehydrogenases and contains a sequence characteristic of binding sites for NAD. Overexpression of the SFA gene leads to enhanced consumption of formaldehyde, which is most probably the reason for the observed hyper-resistance phenotype. In sfa::LEU2 disruption mutants, sensitivity to formaldehyde is correlated with reduced degradation of the chemical. The SFA gene shares an 868 bp divergent promoter with UGX2 a gene of yet unknown function. Promoter deletion studies with a SFA promoter-lacZ gene fusion construct revealed negative interference on expression of SFA by upstream sequences. The upstream region between positions -145 and -172 is totally or partially responsible for control of inducibility of SFA by chemicals such as formaldehyde (FA), ethanol and methyl methanesulphonate. The 41 kDa SFA-encoded protein was purified from a hyper-resistant transformant; it oxidizes long-chain alcohols and, in the presence of glutathione, is able to oxidize FA. SFA is predicted to code for a long-chain alcohol dehydrogenase (glutathione-dependent formaldehyde dehydrogenase) of the yeast S. cerevisiae.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.