REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"CHEK2 variants in susceptibility to breast cancer and evidence of retention of the wild type allele in tumours."

Sodha N, Bullock S, Taylor R, Mitchell G, Guertl-Lackner B, Williams RD, Bevan S, Bishop K, McGuire S, Houlston RS, Eeles RA



Published Dec. 2, 2002 in Br J Cancer volume 87 .

Pubmed ID: 12454775

Abstract:
We have recently shown that the CHEK2*1100delC mutation acts as a low penetrance breast cancer susceptibility allele. To investigate if other CHEK2 variants confer an increased risk of breast cancer, we have screened an affected individual with breast cancer from 68 breast cancer families. Five of these individuals were found to harbour germline variants in CHEK2. Three carried the 1100delC variant (4%). One of these three individuals also carried the missense variant, Arg180His. In the other two individuals, missense variants, Arg117Gly and Arg137Gln, were identified. These two missense variants reside within the Forkhead-associated domain of CHEK2, which is important for the function of the expressed protein. None of these missense variants were present in 300 healthy controls. Microdissected tumours with a germline mutation showed loss of the mutant allele suggesting a mechanism for tumorigenesis other than a loss of the wild type allele. This study provides further evidence that sequence variation in CHEK2 is associated with an increased risk of breast cancer, and implies that tumorigenesis in association with CHEK2 mutations does not involve loss of the wild type allele.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.