REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II."

Mischo HE, Hemmerich P, Grosse F, Zhang S



Published March 11, 2005 in J Biol Chem volume 280 .

Pubmed ID: 15613478

Abstract:
Formation of gamma-H2AX foci is a P. O.cellular response to genotoxic stress, such as DNA double strand breaks or stalled replication forks. Here we show that gamma-H2AX foci were also formed when cells were incubated with 0.5 microg/ml DNA intercalating agent actinomycin D. In untreated cells, gamma-H2AX co-immunoprecipitated with Ku70, a subunit of DNA-dependent protein kinase, as well as with nuclear DNA helicase II (NDH II), a DEXH family helicase also known as RNA helicase A or DHX9. This association was increased manifold after actinomycin D treatment. DNA degradation diminished the amount of Ku70 associated with gamma-H2AX but not that of NDH II. In vitro binding studies with recombinant NDH II and H2AX phosphorylated by DNA-dependent protein kinase confirmed a direct physical interaction between NDH II and gamma-H2AX. Thereby, the NDH II DEXH domain alone, i.e. its catalytic core, was able to support binding to gamma-H2AX. Congruently, after actinomycin D treatment, NDH II accumulated in RNA-containing nuclear bodies that predominantly co-localized with gamma-H2AX foci. Taken together, these results suggest that histone gamma-H2AX promotes binding of NDH II to transcriptionally stalled sites on chromosomal DNA.


This publication refers to following REPAIRtoire entries:



Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.