REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A."

Song OK, Wang X, Waterborg JH, Sternglanz R



Published Oct. 3, 2003 in J Biol Chem volume 278 .

Pubmed ID: 12915400

Abstract:
A yeast gene has been identified that encodes a novel, evolutionarily conserved Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. The gene has been named NAT4. Recombinant Nat4 protein acetylated a peptide corresponding to the N-terminal tail of H4, but not an H3 peptide nor the peptide adrenocorticotropin. H4 and H2A are N-terminally acetylated in all species from yeast to mammals and hence blocked from sequencing by Edman degradation. In contrast, H4 and H2A purified from a nat4 mutant were unacetylated and could be sequenced. Analysis of yeast histones by acid-urea gel electrophoresis showed that all the H4 and H2A from the mutant migrated more rapidly than the same histones from a wild type strain, consistent with the histones from the mutant having one extra positive charge due to one less acetylated amino group. A comparison of yeast proteins from wild type and a nat4 mutant by two-dimensional gel electrophoresis showed no evidence that other yeast proteins are substrates of this acetyltransferase. Thus, Nat4 may be dedicated specifically to the N-terminal acetylation of histones H4 and H2A. Surprisingly, nat4 mutants grow at a normal rate and have no readily observable phenotypes.


This publication refers to following REPAIRtoire entries:



Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.