REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"The molecular basis of Turcot's syndrome."

Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B, et al.



Published March 1, 1995 in N Engl J Med volume 332 .

Pubmed ID: 7661930

Abstract:
BACKGROUND: Turcot's syndrome is characterized clinically by the concurrence of a primary brain tumor and multiple colorectal adenomas. We attempted to define the syndrome at the molecular level. METHODS: Fourteen families with Turcot's syndrome identified in two registries and the family originally described by Turcot and colleagues were studied. Germ-line mutations in the adenomatous polyposis coli (APC) gene characteristic of familial adenomatous polyposis were evaluated, as well as DNA replication errors and germline mutations in nucleotide mismatch-repair genes characteristic of hereditary nonpolyposis colorectal cancer. In addition, a formal risk analysis for brain tumors in familial adenomatous polyposis was performed with a registry data base. RESULTS: Genetic abnormalities were identified in 13 of the 14 registry families. Germ-line APC mutations were detected in 10. The predominant brain tumor in these 10 families was medulloblastoma (11 of 14 patients, or 79 percent), and the relative risk of cerebellar medulloblastoma in patients with familial adenomatous polyposis was 92 times that in the general population (95 percent confidence interval, 29 to 269; P < 0.001). In contrast, the type of brain tumor in the other four families was glioblastoma multiforme. The glioblastomas and colorectal tumors in three of these families and in the original family studied by Turcot had replication errors characteristic of hereditary nonpolyposis colorectal cancer. In addition, germ-line mutations in the mismatch-repair genes hMLH1 or hPMS2 were found in two families. CONCLUSIONS: The association between brain tumors and multiple colorectal adenomas can result from two distinct types of germ-line defects: mutation of the APC gene or mutation of a mismatch-repair gene. Molecular diagnosis may contribute to the appropriate care of affected patients.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.