REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Discrete in vivo roles for the MutL homologs Mlh2p and Mlh3p in the removal of frameshift intermediates in budding yeast."

Harfe BD, Minesinger BK, Jinks-Robertson S



Published Jan. 10, 2000 in Curr Biol volume 10 .

Pubmed ID: 10679328

Abstract:
The DNA mismatch repair machinery is involved in the correction of a wide variety of mutational intermediates. In bacterial cells, homodimers of the MutS protein bind mismatches and MutL homodimers couple mismatch recognition to downstream processing steps [1]. Eukaryotes possess multiple MutS and MutL homologs that form discrete, heterodimeric complexes with specific mismatch recognition and repair properties. In yeast, there are six MutS (Msh1-6p) and four MutL (Mlh1-3p and Pms1p) family members [2] [3]. Heterodimers comprising Msh2p and Msh3p or Msh2p and Msh6p recognize mismatches in nuclear DNA [4] [5] and the subsequent processing steps most often involve a Mlh1p-Pms1P heterodimer [6] [7]. Mlh1p also forms heterodimeric complexes with Mlh2p and Mlh3p [8], and a minor role for Mlh3p in nuclear mismatch repair has been reported [9]. No mismatch repair function has yet been assigned to the fourth yeast MutL homolog, Mlh2p, although mlh2 mutants exhibit weak resistance to some DNA damaging agents [10]. We have used two frameshift reversion assays to examine the roles of the yeast Mlh2 and Mlh3 proteins in vivo. This analysis demonstrates, for the first time, that yeast Mlh2p plays a role in the repair of mutational intermediates, and extends earlier results implicating Mlh3p in mismatch repair.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.