|
|
"Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III."
|
Hilbert TP, Chaung W, Boorstein RJ, Cunningham RP, Teebor GW
|
Published March 7, 1997
in J Biol Chem
volume 272
.
Pubmed ID:
9045706
Abstract:
We previously purified a bovine pyrimidine hydrate-thymine glycol DNA glycosylase/AP lyase. The amino acid sequence of tryptic bovine peptides was homologous to Escherichia coli endonuclease III, theoretical proteins of Saccharomyces cerevisiae and Caenorhabditis elegans, and the translated sequences of rat and human 3'-expressed sequence tags (3'-ESTs) (Hilbert, T. P., Boorstein, R. J., Kung, H. C., Bolton, P. H., Xing, D., Cunningham, R. P., Teebor, G. W. (1996) Biochemistry 35, 2505-2511). Now the human 3'-EST was used to isolate the cDNA clone encoding the human enzyme, which, when expressed as a GST-fusion protein, demonstrated thymine glycol-DNA glycosylase activity and, after incubation with NaCNBH3, became irreversibly cross-linked to a thymine glycol-containing oligodeoxynucleotide, a reaction characteristic of DNA glycosylase/AP lyases. Amino acids within the active site, DNA binding domains, and [4Fe-4S] cluster of endonuclease III are conserved in the human enzyme. The gene for the human enzyme was localized to chromosome 16p13.2-.3. Genomic sequences encoding putative endonuclease III homologues are present in bacteria, archeons, and eukaryotes. The ubiquitous distribution of endonuclease III-like proteins suggests that the 5,6-double bond of pyrimidines is subject to oxidation, reduction, and/or hydration in the DNA of organisms of all biologic domains and that the resulting modified pyrimidines are deleterious to the organism.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|