|
|
"Terminal deoxynucleotidyltransferase forms a ternary complex with a novel chromatin remodeling protein with 82 kDa and core histone."
|
Fujita K, Shimazaki N, Ohta Y, Kubota T, Ibe S, Toji S, Tamai K, Fujisaki S, Hayano T, Koiwai O
|
Published June 1, 2003
in Genes Cells
volume 8
.
Pubmed ID:
12786946
Abstract:
BACKGROUND: Terminal deoxynucleotidyltransferase (TdT) is a DNA polymerase that enhances the Ig and TcR gene diversity in the N region at the junctions of variable (V), diversity (D) and joining (J) segments in B- and T-cells. TdT synthesizes the N region in concert with many proteins including DNA-PKcs, Ku70 and Ku86. To elucidate the molecular mechanism of the N region synthesis, we first attempted to isolate the genes with products that directly interact with TdT. RESULTS: Using a yeast two-hybrid system, we isolated a cDNA clone encoding a novel nuclear protein that interacts with TdT. This protein was designated as TdT interacting factor 2 (TdIF2). The confined region of the C-terminal in TdIF2 is involved in specific interaction with the entire C-terminal in TdT. TdIF2 contains an acidic region comprised of 42 residues. TdIF2 was shown to bind specifically to a core histone by pull down assay using specific antibodies against TdIF2. When a TdT/TdIF2 complex was applied on to a DNA-cellulose column, only TdT bound to the column while TdIF2 passed through. TdIF2 reduces the TdT activity to 46% of its maximum value in vitro assay system using activated DNA as primer. CONCLUSIONS: TdIF2 binds directly to TdT and core histone. Furthermore, TdT, TdIF2 and core histone form a ternary complex. TdIF2 liberates H2A/H2B from a core histone in correlation with PCNA. The enzymatic consequence of the TdIF2/TdT complex is the reduction of TdT activity in vitro. TdIF2 would function as a chromatin remodeling protein at the N region synthesis.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|