|
|
"A bidirectional promoter connects the poly(ADP-ribose) polymerase 2 (PARP-2) gene to the gene for RNase P RNA. structure and expression of the mouse PARP-2 gene."
|
Ame JC, Schreiber V, Fraulob V, Dolle P, de Murcia G, Niedergang CP
|
Published April 6, 2001
in J Biol Chem
volume 276
.
Pubmed ID:
11133988
Abstract:
Poly(ADP-ribose) polymerase 2 (PARP-2) is a DNA damage-dependent enzyme that belongs to a growing family of enzymes seemingly involved in genome protection. To gain insight into the physiological role of PARP-2 and to investigate mechanisms of PARP-2 gene regulation, we cloned and characterized the murine PARP-2 gene. The PARP-2 gene consists of 16 exons and 15 introns spanning about 13 kilobase pairs. Interestingly, the PARP-2 gene lies head to head with the gene encoding the mouse RNase P RNA subunit. The distance between the transcription start sites of the PARP-2 and RNase P RNA genes is 114 base pairs. This suggested that regulation of the expression of both genes may be coordinated through a bi-directional promoter. The PARP-2/RNase P RNA gene organization is conserved in the human. To our knowledge, this is the first report of a RNA polymerase II gene and an RNA polymerase III gene sharing the same promoter region and potentially the same transcriptional control elements. Reporter gene constructs showed that the 113-base pair intergenic region was indeed sufficient for the expression of both genes and revealed the importance of both the TATA and the DSE/Oct-1 expression control elements for the PARP-2 gene transcription. The expression of both genes is clearly independently regulated. PARP-2 is expressed only in certain tissues, and RNase P RNA is expressed in all tissues. This suggests that both genes may be subjected to multiple levels of control and may be regulated by different factors in different cellular contexts.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|