REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"A bidirectional promoter connects the poly(ADP-ribose) polymerase 2 (PARP-2) gene to the gene for RNase P RNA. structure and expression of the mouse PARP-2 gene."

Ame JC, Schreiber V, Fraulob V, Dolle P, de Murcia G, Niedergang CP



Published April 6, 2001 in J Biol Chem volume 276 .

Pubmed ID: 11133988

Abstract:
Poly(ADP-ribose) polymerase 2 (PARP-2) is a DNA damage-dependent enzyme that belongs to a growing family of enzymes seemingly involved in genome protection. To gain insight into the physiological role of PARP-2 and to investigate mechanisms of PARP-2 gene regulation, we cloned and characterized the murine PARP-2 gene. The PARP-2 gene consists of 16 exons and 15 introns spanning about 13 kilobase pairs. Interestingly, the PARP-2 gene lies head to head with the gene encoding the mouse RNase P RNA subunit. The distance between the transcription start sites of the PARP-2 and RNase P RNA genes is 114 base pairs. This suggested that regulation of the expression of both genes may be coordinated through a bi-directional promoter. The PARP-2/RNase P RNA gene organization is conserved in the human. To our knowledge, this is the first report of a RNA polymerase II gene and an RNA polymerase III gene sharing the same promoter region and potentially the same transcriptional control elements. Reporter gene constructs showed that the 113-base pair intergenic region was indeed sufficient for the expression of both genes and revealed the importance of both the TATA and the DSE/Oct-1 expression control elements for the PARP-2 gene transcription. The expression of both genes is clearly independently regulated. PARP-2 is expressed only in certain tissues, and RNase P RNA is expressed in all tissues. This suggests that both genes may be subjected to multiple levels of control and may be regulated by different factors in different cellular contexts.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.