REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation."

Haenni SS, Hassa PO, Altmeyer M, Fey M, Imhof R, Hottiger MO



Published Jan. 1, 2008 in Int J Biochem Cell Biol volume 40 .

Pubmed ID: 18436469

Abstract:
Poly-ADP-ribose polymerase-2 (PARP-2) was described to regulate cellular functions comprising DNA surveillance, inflammation and cell differentiation by co-regulating different transcription factors. Using an in vitro and in vivo approach, we identified PARP-2 as a new substrate for the histone acetyltransferases PCAF and GCN5L. Site directed mutagenesis indicated that lysines 36 and 37, located in the nuclear localization signal of PARP-2, are the main targets for PCAF and GCN5L activity in vitro. Interestingly, acetylation of the same two PARP-2 residues reduces the DNA binding and enzymatic activity of PARP-2. Finally, PARP-2 with mutated lysines 36 and 37 showed reduced auto-mono-ADP-ribosylation when compared to wild type PARP-2. Together, our results provide evidence that acetylation of PARP-2 is a key post-translational modification that may regulate DNA binding and consequently also the enzymatic activity of PARP-2.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.