REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Crystal structure of DNA photolyase from Escherichia coli."

Park HW, Kim ST, Sancar A, Deisenhofer J



Published June 1, 1995 in Science volume 268 .

Pubmed ID: 7604260

Abstract:
Photolyase repairs ultraviolet (UV) damage to DNA by splitting the cyclobutane ring of the major UV photoproduct, the cis, syn-cyclobutane pyrimidine dimer (Pyr <> Pyr). The reaction is initiated by blue light and proceeds through long-range energy transfer, single electron transfer, and enzyme catalysis by a radical mechanism. The three-dimensional crystallographic structure of DNA photolyase from Escherichia coli is presented and the atomic model was refined to an R value of 0.172 at 2.3 A resolution. The polypeptide chain of 471 amino acids is folded into an amino-terminal alpha/beta domain resembling dinucleotide binding domains and a carboxyl-terminal helical domain; a loop of 72 residues connects the domains. The light-harvesting cofactor 5,10-methenyltetrahydrofolylpolyglutamate (MTHF) binds in a cleft between the two domains. Energy transfer from MTHF to the catalytic cofactor flavin adenine dinucleotide (FAD) occurs over a distance of 16.8 A. The FAD adopts a U-shaped conformation between two helix clusters in the center of the helical domain and is accessible through a hole in the surface of this domain. Dimensions and polarity of the hole match those of a Pyr <> Pyr dinucleotide, suggesting that the Pyr <> Pyr "flips out" of the helix to fit into this hole, and that electron transfer between the flavin and the Pyr <> Pyr occurs over van der Waals contact distance.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.