REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome."

Guzder SN, Sung P, Prakash L, Prakash S



Published April 12, 1996 in J Biol Chem volume 271 .

Pubmed ID: 8621533

Abstract:
In yeast and humans, nucleotide excision repair (NER) of ultraviolet (UV)-damaged DNA requires a large number of highly conserved protein factors, which include the multisubunit RNA polymerase II transcription factor TFIIH. Here, we examine whether NER occurs by sequential assembly of different repair factors at the site of DNA damage or by the placement there of a "preformed" repairosome containing TFIIH and all the other essential NER factors. Contrary to the recent report (Svejstrup, J. Q., Wang, Z., Feaver, W. J., Wu, X., Bushnell, D. A., Donahue, T. F., Friedberg, E. C., and Kornberg, R. D. (1995) Cell 80, 21-28), our results provide no evidence for a pre-assembled repairosome; instead, they support the sequential assembly model. By several independent criteria, including co-purification, immunoprecipitation, and gel filtration of homogeneous proteins, we show that the damage recognition factor Rad14 exists in a ternary complex with the Rad1-Rad10 nuclease. We also find that Rad14 interacts directly with Rad1, but only slightly with Rad10, and that it interacts with the Rad1-Rad10 complex much more efficiently than with Rad1 alone. In the reconstituted NER system, a higher level of incision of UV-damaged DNA is achieved with the Rad1-Rad10-Rad14 complex, which we designate as nucleotide excision repair factor-1, NEF-1.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.