|
|
"Molecular cloning and characterization of splice variants of human RAD50 gene."
|
Kim KK, Shin BA, Seo KH, Kim PN, Koh JT, Kim JH, Park BR
|
Published July 22, 1999
in Gene
volume 235
.
Pubmed ID:
10415333
Abstract:
In this report, splice variants of human RAD50 (hRAD50) were cloned and characterized. A Northern blot survey identified two transcripts that hybridized to a hRAD50 cDNA clone, an upper faint band (5.9kb) and lower dense band (4.6kb). cDNA clones (hRAD50-2, 4.6kb) encompassing the entire hRAD50 transcript but having a shorter 3'-untranslated region (3'UTR) than the previously reported hRAD50-1 cDNA (5.9kb; Dolganov, G.M., Maser, R.S., Novikov, A., Tosto, L., Chong, S., Bressan, D.A., Petrini, J.H.J., 1996. Human Rad50 is physically associated with human Mre11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16, 4832-4841.) were isolated. The presence of AU-rich sequences in the 3'UTR of hRAD50-1, which define mRNA instability and Northern results, suggest that hRAD50-2 is the major transcript of hRAD50. A third alternative splice variant that lacks the ATP-binding domain was also identified (hRAD50-3, approximately 4.5kb). Expression of hRAD50-3 transcript was detected in all tissues examined by RT-PCR (reverse transcriptase-polymerase chain reaction) and nested DNA-PCR analyses. Expression of hRAD50 partially rescued the MMS (methyl methanesulfonate)-sensitive phenotype in rad50 mutant yeast, whereas hRAD50-3 did not show complementation. These data suggest that the hRAD50-3 does not repair DNA double-strand breaks most likely due to its inability to bind ATP, and to bind damaged DNA. The existence of these alternative splice forms is potentially important in regulation of the biological activity of the DNA recombinational repair gene, hRAD50.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|