REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"cDNAs encoding the large subunit of human replication factor C."

Bunz F, Kobayashi R, Stillman B



Published Dec. 1, 1993 in Proc Natl Acad Sci U S A volume 90 .

Pubmed ID: 8248204

Abstract:
Replication factor C (RFC) is a multisubunit, DNA polymerase accessory protein required for the coordinated synthesis of both DNA strands during simian virus 40 DNA replication in vitro. Previous studies have shown that RFC is a DNA-dependent ATPase that binds in a structure-specific manner to the 3' end of a primer hybridized to a template DNA, an activity thought intrinsic to the 140-kDa component of this multisubunit complex. Here, the isolation and analysis of cDNAs encoding this subunit is described. Analysis of the full-length coding sequence revealed an open reading frame of 3.4 kb, encoding an 1148-amino acid protein with a predicted molecular mass of 130 kDa. A putative ATP-binding motif was observed that is similar to a motif in several of the smaller subunits of RFC and in functionally homologous replication factors of bacterial and viral origin. A "DEAD" box is also conserved among these proteins. The predicted protein shows significant identity with a DNA-binding protein of murine origin (B. Luckow, P. Lichter, and G. Schutz, personal communication). Regions of similarity were also seen between the amino acid sequences of the 140-kDa subunit of RFC, poly(ADP-ribose) polymerase, and bacterial DNA ligases--possibly representing a conserved structural feature of these proteins that bind similar DNA substrates.


This publication refers to following REPAIRtoire entries:

Genes
Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.