REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Multiple modes of interaction of the deglycosylation enzyme, mouse peptide N-glycanase, with the proteasome."

Li G, Zhou X, Zhao G, Schindelin H, Lennarz WJ



Published Nov. 1, 2005 in Proc Natl Acad Sci U S A volume 102 .

Pubmed ID: 16249333

Abstract:
Peptide N-glycanase (PNGase) is involved in the cleavage of oligosaccharide chains from misfolded glycoproteins that are destined for degradation by the proteasome. Earlier, a number of potential binding partners of mouse PNGase (mPNGase) were detected by using the yeast two-hybrid system. In the current study, an in vitro system was set up to investigate direct interactions between mPNGase and these candidate proteins. Although the yeast two-hybrid system suggested an interaction of six different proteins with mPNGase, only mHR23B and the proteasome subunit mS4 were found to interact with mPNGase. In fact, mS4 competes with mHR23B for binding to mPNGase. These results suggested two possible pathways for the interaction between mPNGase and the proteasome. In one pathway, mHR23B mediates the interaction between mPNGase and the proteasome. In an alternative pathway, mPNGase directly binds to the proteasome subunit, mS4. In either case, it is clear that PNGase is located in close proximity to the proteasome and is available for deglycosylation of glycoproteins destined for degradation. Surprisingly, mPNGase also was found to mediate binding of the cytoplasmic protein, p97, to the proteasome through the formation of a ternary complex made up of mHR23B, mPNGase, and p97. Because p97 is known to bind to the endoplasmic reticulum membrane protein AMFR (gp78), an E3 ligase, we propose a model in which p97, mPNGase, and mHR23B mediate interaction of the endoplasmic reticulum with the proteasome.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.