REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Genes involved in the determination of the rate of inversions at short inverted repeats."

Slupska MM, Chiang JH, Luther WM, Stewart JL, Amii L, Conrad A, Miller JH



Published June 1, 2000 in Genes Cells volume 5 .

Pubmed ID: 10886369

Abstract:
BACKGROUND: Not all of the enzymatic pathways involved in genetic rearrangements have been elucidated. While some rearrangements occur by recombination at areas of high homology, others are mediated by short, often interrupted homologies. We have previously constructed an Escherichia coli strain that allows us to examine inversions at microhomologies, and have shown that inversions can occur at short inverted repeats in a recB,C-dependent fashion. RESULTS: Here, we report on the use of this strain to define genetic loci involved in limiting rearrangements on an F' plasmid carrying the lac genes. Employing mini-Tn10 derivatives to generate insertions near or into genes of interest, we detected three loci (rmuA,B,C) that, when mutated, increase inversions. We have mapped, cloned and sequenced these mutator loci. In one case, inactivation of the sbcC gene leads to an increase in rearrangements, and in another, insertions near the recE gene lead to an even larger increase. The third gene involved in limiting inversions, rmuC, has been mapped at 86 min on the E. coli chromosome and encodes a protein of unknown function with a limited homology to myosins, and some of the SMC (structural maintenance of chromosomes) proteins. CONCLUSIONS: This work presents the first example of an anti-mutator role of the sbcC,D genes, and defines a new gene (rmuC) involved in DNA recombination.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.