|
|
"F sex factor encodes a single-stranded DNA binding protein (SSB) with extensive sequence homology to Escherichia coli SSB."
|
Chase JW, Merrill BM, Williams KR
|
Published Sept. 1, 1983
in Proc Natl Acad Sci U S A
volume 80
.
Pubmed ID:
6351061
Abstract:
We have determined the sequence of the gene encoding a single-stranded DNA (ss DNA) binding protein (SSB) from the Escherichia coli F sex factor and the amino acid sequence of the protein it encodes. The protein has extensive homology with E. coli SSB, particularly within its NH2-terminal region, where 87 of the first 115 amino acid residues are identical to those of the E. coli protein. We have previously shown that this portion of E. coli SSB contains the DNA binding region. The sequences diverge extensively in their COOH-terminal regions, although small areas of homology exist in several places. Six of the last seven amino acid residues of the two proteins are identical, which may have implications in terms of the direct interactions of these proteins with other proteins required for DNA replication, recombination, and repair. The coding region of the F plasmid ssf gene is 537 base pairs. The protein encoded by the gene contains 178 amino acids (one more than E. coli SSB) and has a calculated molecular weight of 19,505. Other than the presumptive Shine-Dalgarno sequence, the promoter and terminator regions of both genes are not similar. The most significant feature in this regard may be the lack of a region of dyad symmetry within the presumptive promoter of the F plasmid ssf gene as is found in the region of the presumptive E. coli ssb promoter. In this report the predicted secondary structures of both the F plasmid and E. coli SSB proteins are compared and the evolutionary significance of their sequence and structural similarities to the functional domains of the proteins are discussed.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|