|
|
"The tumor suppressor p53 is bound to RNA by a stable covalent linkage."
|
Samad A, Carroll RB
|
Published March 1, 1991
in Mol Cell Biol
volume 11
.
Pubmed ID:
1705009
Abstract:
We have previously shown that the carboxyl-terminal tryptic peptide of the tumor suppressor p53 coeluted from reverse-phase high-performance liquid chromatography (HPLC) with ribonucleotides, suggesting the possible linkage of RNA to p53. In this report, we establish that p53 is covalently linked to RNA, using biochemical criteria at the levels of both tryptic peptide and intact protein: the electrophoretic properties of a tryptic peptide containing phosphorylated Ser-389 and the HPLC chromatographic properties of p53 depend on the linked RNA, p53, purified through urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and HPLC, copurifies with RNA, and Ser-389 liberates ribonucleotides upon RNase or alkali treatment. Wild-type and mutant p53s from both simian virus 40 (SV40)-transformed and SV40-nontransformed cells are RNA linked, indicating that RNA linkage may be a general property of p53. The RNA is labeled in vivo with 3H-uridine and in vitro by RNA ligase, suggesting that the RNA is bound by a 5' linkage. The RNA is a long-lived, integral component of p53 rather than a transient reaction intermediate. RNA linkage occurs at an evolutionarily conserved site on p53. We propose that RNA-linked p53 is a major biologically active form of p53 and that its interaction with RNA-linked SV40 T antigen reflects a role in RNA metabolism.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|