REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
DNA damage
Draw a picture

Bujnicki Lab Homepage

"Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon."

Gu YM, Jin YH, Choi JK, Baek KH, Yeo CY, Lee KY

Published Feb. 9, 2006 in FEBS Lett volume 580 .

Pubmed ID: 16376338

Recognition of phosphorylated serine/threonine-containing motifs by 14-3-3 depends on the dimerization of 14-3-3. However, the molecular cues that control 14-3-3 dimerization are not well understood. In order to identify proteins that control 14-3-3 dimerization, we analyzed proteins that have effects on 14-3-3 dimerization and report that protein kinase A (PKA) phosphorylates 14-3-3zeta at a specific residue (Ser58). Phosphorylation by PKA leads to modulation of 14-3-3zeta dimerization and affect its interaction with partner proteins. Substitution of Ser58 to Ala completely abolished phosphorylation of 14-3-3zeta by PKA. A phospho-mimic mutant of 14-3-3zeta, Ser58 to Glu substitution, failed to form homodimers, showed reduced interaction with 14-3-3epsilon and p53, and could not enhance transcriptional activity of p53. Moreover, activation of PKA decreases and inhibition of PKA increases the dimerization of 14-3-3zeta and the functional interaction of 14-3-3zeta with p53. Therefore, our results suggest that PKA is a new member of protein kinases that can phosphorylate and impair the function of 14-3-3.

This publication refers to following REPAIRtoire entries:


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.