REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Solution structure of the C-terminal single-stranded DNA-binding domain of Escherichia coli topoisomerase I."

Yu L, Zhu CX, Tse-Dinh YC, Fesik SW



Published June 13, 1995 in Biochemistry volume 34 .

Pubmed ID: 7779808

Abstract:
Escherichia coli DNA topoisomerase I catalyzes the interconversion of different topological forms of DNA. In this paper we describe NMR studies of a 14K C-terminal fragment of this enzyme that binds preferentially to single-stranded DNA and enhances the enzyme's ability to relax negatively supercoiled DNA under high salt conditions. The 1H, 13C, and 15N resonances of the protein were assigned from a number of heteronuclear multidimensional NMR experiments, and the three-dimensional structure of the protein was determined from a total of 2188 NMR-derived restraints. The root-mean-square deviation about the mean coordinate positions for residues 13-120 is 0.68 +/- 0.11 A for the backbone atoms and 1.09 +/- 0.09 A for all heavy atoms. The overall fold, which consists of two four-stranded beta-sheets separated by two helices, differs from other DNA- and RNA-binding proteins such as gene 5, cold shock protein, and hnRNP C. From an analysis of the changes in chemical shift upon the addition of single-stranded DNA, the location of the oligonucleotide binding site was determined. The binding site consists of a beta-sheet containing positively charged and aromatic amino acids and, in spite of its different structure, is similar to that found in other proteins that bind single-stranded oligonucleotides.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.