|
|
"Direct interaction with and activation of p53 by SMAR1 retards cell-cycle progression at G2/M phase and delays tumor growth in mice."
|
Kaul R, Mukherjee S, Ahmed F, Bhat MK, Chhipa R, Galande S, Chattopadhyay S
|
Published Jan. 20, 2003
in Int J Cancer
volume 103
.
Pubmed ID:
12494467
Abstract:
The tumor-suppressor p53 is a multifunctional protein mainly responsible for maintaining genomic integrity. p53 induces its tumor-suppressor activity by either causing cell-cycle arrest (G(1)/S or G(2)/M) or inducing cells to undergo apoptosis. This function of wild-type p53 as "guardian of the genome" is presumably achieved by forming molecular complexes with different DNA targets as well as by interacting with a number of cellular proteins, e.g., Mdm2, Gadd45, p21, 14-3-3sigma, Bax and Apaf-1. Upon activation, p53 activates p21, which in turn controls the cell cycle by regulating G(1) or G(2) checkpoints. Here, we report SMAR1 as one such p53-interacting protein that is involved in delaying tumor progression in vivo as well as in regulating the cell cycle. SMAR1 is a newly identified MARBP involved in chromatin-mediated gene regulation. The SMAR1 gene encodes at least 2 alternatively spliced variants: SMAR1(L) (the full-length form) and SMAR1(S) (the shorter form). We report that expression of SMAR1(S), but not of SMAR1(L), mRNA was decreased in most of the human cell lines examined, suggesting selective silencing of SMAR1(S). Overexpression of SMAR1(S) in mouse melanoma cells (B16F1) and their subsequent injection in C57BL/6 mice delays tumor growth. Exogenous SMAR1(S) causes significant retardation of B16F1 cells in the G(2)/M phase of the cell cycle compared to SMAR1(L). SMAR1(S) activates p53-mediated reporter gene expression in mouse melanoma cells, breast cancer cells (MCF-7) and p53 null cells (K562), followed by activation of its downstream effector, p21. We further demonstrate that SMAR1 physically interacts and colocalizes with p53. These data together suggest that SMAR1 is the only known MARBP that delays tumor progression via direct activation and interaction with tumor-suppressor p53.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|