REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes."

Zavitz KH, Marians KJ



Published April 5, 1992 in J Biol Chem volume 267 .

Pubmed ID: 1313026

Abstract:
The PriA replication protein of Escherichia coli (formerly replication factor Y or protein n') is multifunctional. It is a site-specific, single-stranded DNA-dependent ATPase (dATPase), a 3'----5' DNA helicase, and guides the ordered assembly of the primosome, a mobile, multiprotein DNA replication priming/helicase complex. Although PriA is not absolutely required for viability, priA null mutant cells grow very slowly, have poor viability, and form extensive filaments. In order to assess which of the multiple activities of PriA are required for normal replication and growth, site-directed mutagenesis was employed to introduce single amino acid substitutions for the invariant lysine within the consensus nucleotide-binding motif found in PriA. Biochemical characterization of the representative purified mutant PriA proteins revealed them to be completely deficient in nucleotide hydrolysis, incapable of translocation along a single-stranded DNA binding protein-coated single-stranded DNA template, and unable to manifest the 3'----5' DNA helicase activity of wild-type PriA. These mutant proteins were, however, capable of catalyzing the assembly of active primosomes in vitro. Furthermore, when supplied in trans to insertionally inactivated priA cells, plasmids containing a copy of these mutant priA genes restored the wild-type growth rate, viability, and cell morphology. Based on these results, a model for PriA function in vivo is discussed.


This publication refers to following REPAIRtoire entries:



Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.