REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Replication factor C disengages from proliferating cell nuclear antigen (PCNA) upon sliding clamp formation, and PCNA itself tethers DNA polymerase delta to DNA."

Podust VN, Tiwari N, Stephan S, Fanning E



Published Nov. 27, 1998 in J Biol Chem volume 273 .

Pubmed ID: 9822671

Abstract:
Replication factor C (RF-C) and proliferating cell nuclear antigen (PCNA) assemble a complex, called sliding clamp, onto DNA. The clamp in turn loads DNA polymerases (pol) delta and epsilon to form the corresponding holoenzymes, which play an essential role in replication of eukaryotic chromosomal DNA and in several DNA repair pathways. To determine the fate of RF-C after loading of PCNA onto DNA, we tagged the RF-C subunit p37 with a protein kinase A recognition motif, so that the recombinant five-subunit RF-C complex could be 32P-labeled and quantitatively detected in femtomolar amounts. Nonspecific binding of RF-C to DNA was minimized by replacing the p140 subunit with an N-terminally truncated p140 subunit lacking the previously identified nonspecific DNA binding domain. Neither of these modifications impaired the clamp loading activity of the recombinant RF-C. Using gel filtration techniques, we demonstrated that RF-C dissociated from the DNA after clamp loading or pol delta holoenzyme assembly, while PCNA or PCNA.pol delta complex remained bound to DNA. PCNA catalytically loaded onto the template-primer was sufficient by itself to tether pol delta and stimulate DNA replication. The readdition of RF-C to the isolated PCNA.DNA complex did not further stimulate pol delta DNA synthesis. We conclude that pol delta holoenzyme consists of PCNA and pol delta core and that RF-C serves only to load PCNA clamp.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.