REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Role of DNA polymerase zeta in the bypass of a (6-4) TT photoproduct."

Johnson RE, Haracska L, Prakash S, Prakash L



Published May 1, 2001 in Mol Cell Biol volume 21 .

Pubmed ID: 11313481

Abstract:
UV light-induced DNA lesions block the normal replication machinery. Eukaryotic cells possess DNA polymerase eta (Poleta), which has the ability to replicate past a cis-syn thymine-thymine (TT) dimer efficiently and accurately, and mutations in human Poleta result in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Here, we test Poleta for its ability to bypass a (6-4) TT lesion which distorts the DNA helix to a much greater extent than a cis-syn TT dimer. Opposite the 3' T of a (6-4) TT photoproduct, both yeast and human Poleta preferentially insert a G residue, but they are unable to extend from the inserted nucleotide. DNA Polzeta, essential for UV induced mutagenesis, efficiently extends from the G residue inserted opposite the 3' T of the (6-4) TT lesion by Poleta, and Polzeta inserts the correct nucleotide A opposite the 5' T of the lesion. Thus, the efficient bypass of the (6-4) TT photoproduct is achieved by the combined action of Poleta and Polzeta, wherein Poleta inserts a nucleotide opposite the 3' T of the lesion and Polzeta extends from it. These biochemical observations are in concert with genetic studies in yeast indicating that mutations occur predominantly at the 3' T of the (6-4) TT photoproduct and that these mutations frequently exhibit a 3' T-->C change that would result from the insertion of a G opposite the 3' T of the (6-4) TT lesion.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.