REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Isolation and partial characterization of murine O6-alkylguanine-DNA-alkyltransferase: comparative sequence and structural properties."

Santibanez-Koref M, Elder RH, Fan CY, Cawkwell L, McKie JH, Douglas KT, Margison GP, Rafferty JA



Published Jan. 1, 1992 in Mol Carcinog volume 5 .

Pubmed ID: 1554415

Abstract:
A cDNA encoding murine O6-alkylguanine-DNA-alkyltransferase (ATase) has been sequenced after isolation from total liver RNA by the polymerase chain reaction using oligonucleotide primers derived from the rat ATase cDNA sequence. Functionally active murine ATase protein has been expressed in Escherichia coli at high levels (about 2% of total protein) and purified to apparent homogeneity (molecular mass 26 kDa). In liquid hybridization experiments, anti-human ATase polyclonal antibodies inhibited human but not rat or mouse ATase, whereas anti-rat polyclonal antibodies inhibited rat and mouse but not human ATase. Both antibodies detected all mammalian ATases tested by western analysis so far. These results indicate some common epitopes and at least one unique human epitope. We compared the amino-acid sequence of the murine ATase with those of other mammalian and bacterial ATases. The proteins of this family all have a large domain (approximately 70 amino acids) of highly conserved residues flanking the sequence PCHRV, which contains the alkyl-accepting cysteine residue of the active site. No evidence was found in the sequences for helix-turn-helix, leucine-zipper, or zinc-finger motifs for DNA recognition and binding. Nuclear localization signals (basic-residue-rich regions) could not be uniquely identified in the mammalian members of the family. Outside of the conserved PCHRV region, there were major differences between prokaryotic and eukaryotic proteins at the primary structure level: there was a series of proline-rich motifs, but these also varied between sequences.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.