REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading."

Goldsby RE, Hays LE, Chen X, Olmsted EA, Slayton WB, Spangrude GJ, Preston BD



Published Nov. 26, 2002 in Proc Natl Acad Sci U S A volume 99 .

Pubmed ID: 12429860

Abstract:
Mutations are a hallmark of cancer. Normal cells minimize spontaneous mutations through the combined actions of polymerase base selectivity, 3' --> 5' exonucleolytic proofreading, mismatch correction, and DNA damage repair. To determine the consequences of defective proofreading in mammals, we created mice with a point mutation (D400A) in the proofreading domain of DNA polymerase delta (poldelta, encoded by the Pold1 gene). We show that this mutation inactivates the 3' --> 5' exonuclease of poldelta and causes a mutator and cancer phenotype in a recessive manner. By 18 months of age, 94% of homozygous Pold1(D400A/D400A) mice developed cancer and died (median survival = 10 months). In contrast, only 3-4% of Pold1(+/D400A) and Pold1(+/+) mice developed cancer in this time frame. Of the 66 tumors arising in 49 Pold1(D400A/D400A) mice, 40 were epithelial in origin (carcinomas), 24 were mesenchymal (lymphomas and sarcomas), and two were composite (teratomas); one-third of these animals developed tumors in more than one tissue. Skin squamous cell carcinoma was the most common tumor type, occurring in 60% of all Pold1(D400A/D400A) mice and in 90% of those surviving beyond 8 months of age. These data show that poldelta proofreading suppresses spontaneous tumor development and strongly suggest that unrepaired DNA polymerase errors contribute to carcinogenesis. Mice deficient in poldelta proofreading provide a tractable model to study mechanisms of epithelial tumorigenesis initiated by a mutator phenotype.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.