|
|
"Mismatch repair protein Msh2 contributes to UVB-induced cell cycle arrest in epidermal and cultured mouse keratinocytes."
|
van Oosten M, Stout GJ, Backendorf C, Rebel H, de Wind N, Darroudi F, van Kranen HJ, de Gruijl FR, Mullenders LH
|
Published Feb. 2, 2005
in DNA Repair (Amst)
volume 4
.
Pubmed ID:
15533840
Abstract:
Nucleotide excision repair (NER), cell cycle regulation and apoptosis are major defence mechanisms against the carcinogenic effects of UVB radiation. NER eliminates UVB-induced DNA photolesions via two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). In a previous study, we found UVB-induced accumulation of tetraploid (4N) keratinocytes in the epidermis of Xpc(-/-) mice (no GGR), but not in Xpa(-/-) (no TCR and no GGR) or in wild-type (WT) mice. We inferred that this arrest in Xpc(-/-) mice is caused by erroneous replication past photolesions, leading to 'compound lesions' known to be recognised by mismatch repair (MMR). MMR-induced futile cycles of breakage and resynthesis at sites of compound lesions may then sustain a cell cycle arrest. The present experiments with Xpc(-/-)Msh2(-/-) mice and derived keratinocytes show that the MMR protein Msh2 indeed plays a role in the generation of the UVB-induced arrested cells: a Msh2-deficiency lowered significantly the percentage of arrested cells in vivo (40-50%) and in vitro (30-40%). Analysis of calyculin A (CA)-induced premature chromosome condensation (PCC) of cultured Xpc(-/-) keratinocytes showed that the delayed arrest occurred in late S phase rather than in G(2)-phase. Taken together, the results indicate that in mouse epidermis and cultured keratinocytes, the MMR protein Msh2 plays a role in the UVB-induced S-phase arrest. This indicates that MMR plays a role in the UVB-induced S-phase arrest. Alternatively, Msh2 may have a more direct signalling function.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|