|
|
"The trafficking protein Tmed2/p24beta(1) is required for morphogenesis of the mouse embryo and placenta."
|
Jerome-Majewska LA, Achkar T, Luo L, Lupu F, Lacy E
|
Published May 1, 2010
in Dev Biol
volume 341
.
Pubmed ID:
20178780
Abstract:
During vesicular transport between the endoplasmic reticulum and the Golgi, members of the TMED/p24 protein family form hetero-oligomeric complexes that facilitate protein-cargo recognition as well as vesicle budding. In addition, they regulate each other's level of expression. Despite analyses of TMED/p24 protein distribution in mammalian cells, yeast, and C. elegans, little is known about the role of this family in vertebrate embryogenesis. We report the presence of a single point mutation in Tmed2/p24beta(1) in a mutant mouse line, 99J, identified in an ENU mutagenesis screen for recessive developmental abnormalities. This mutation does not affect Tmed2/p24beta(1) mRNA levels but results in loss of TMED2/p24beta(1) protein. Prior to death at mid-gestation, 99J homozygous mutant embryos exhibit developmental delay, abnormal rostral-caudal elongation, randomized heart looping, and absence of the labyrinth layer of the placenta. We find that Tmed2/p24beta(1) is normally expressed in tissues showing morphological defects in 99J mutant embryos and that these affected tissues lack the TMED2/p24beta(1) oligomerization partners, TMED7/p24gamma(3) and TMED10/p24delta(1). Our data reveal a requirement for TMED2/p24beta(1) protein in the morphogenesis of the mouse embryo and placenta.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|