REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Diminished pancreatic beta-cell mass in securin-null mice is caused by beta-cell apoptosis and senescence."

Chesnokova V, Wong C, Zonis S, Gruszka A, Wawrowsky K, Ren SG, Benshlomo A, Yu R



Published June 1, 2009 in Endocrinology volume 150 .

Pubmed ID: 19213844

Abstract:
Pituitary tumor transforming gene (PTTG) encodes a securin protein critical in regulating chromosome separation. PTTG-null (PTTG(-/-)) mice exhibit pancreatic beta-cell hypoplasia and insulinopenic diabetes. We tested whether PTTG deletion causes beta-cell senescence, resulting in diminished beta-cell mass. We examined beta-cell mass, proliferation, apoptosis, neogenesis, cell size, and senescence in PTTG(-/-) and WT mice from embryo to young adulthood before diabetes is evident. The roles of cyclin-dependent kinase inhibitors and DNA damage in the pathogenesis of diabetes in PTTG(-/-) mice were also addressed. Relative beta-cell mass in PTTG(-/-) mice began to decrease at 2-3 wk, whereas beta-cell proliferation rate was initially normal but decreased in PTTG(-/-) mice beginning at 2 months. Apoptosis was also much more evident in PTTG(-/-) mice. At 1 month, beta-cell neogenesis was robust in wild-type mice but was absent in PTTG(-/-) mice. In addition, the size of beta-cells became larger and macronuclei were prominent in PTTG(-/-) animals. Senescence-associated beta-galactosidase was also active in PTTG(-/-) beta-cells at 1 month. Cyclin-dependent kinase inhibitor p21 was progressively up-regulated in PTTG(-/-) islets, and p21 deletion partially rescued PTTG(-/-) mice from development of diabetes. mRNA array showed that DNA damage-associated genes were activated in PTTG(-/-) islets. We conclude that beta-cell apoptosis and senescence contribute to the diminished beta-cell mass in PTTG(-/-) mice, likely secondary to DNA damage. Our results also suggest that ductal progenitor beta-cells are exhausted by excessive neogenesis induced by apoptosis in PTTG(-/-) mice.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.