REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Role of RAD51C and XRCC3 in genetic recombination and DNA repair."

Liu Y, Tarsounas M, O'regan P, West SC



Published Feb. 19, 2007 in J Biol Chem volume 282 .

Pubmed ID: 17114795

Abstract:
In germ line cells, recombination is required for gene reassortment and proper chromosome segregation at meiosis, whereas in somatic cells it provides an important mechanism for the repair of DNA double-strand breaks. Five proteins (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) that share homology with RAD51 recombinase and are known as the RAD51 paralogs are important for recombinational repair, as paralog-defective cell lines exhibit spontaneous chromosomal aberrations, defective DNA repair, and reduced gene targeting. The paralogs form two distinct protein complexes, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3, but their precise cellular roles remain unknown. Here, we show that, like MLH1, RAD51C localized to mouse meiotic chromosomes at pachytene/diplotene. Using immunoprecipitation and gel filtration analyses, we found that Holliday junction resolvase activity associated tightly and co-eluted with the 80-kDa RAD51C-XRCC3 complex. Taken together, these data indicate that the RAD51C-XRCC3-associated Holliday junction resolvase complex associates with crossovers and may play an essential role in the resolution of recombination intermediates prior to chromosome segregation.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.