|
|
"Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine."
|
Hang B, Singer B, Margison GP, Elder RH
|
Published Nov. 25, 1997
in Proc Natl Acad Sci U S A
volume 94
.
Pubmed ID:
9371767
Abstract:
It has previously been reported that 1,N6-ethenoadenine (epsilonA), deaminated adenine (hypoxanthine, Hx), and 7,8-dihydro-8-oxoguanine (8-oxoG), but not 3,N4-ethenocytosine (epsilonC), are released from DNA in vitro by the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG). To assess the potential contribution of APNG to the repair of each of these mutagenic lesions in vivo, we have used cell-free extracts of tissues from APNG-null mutant mice and wild-type controls. The ability of these extracts to cleave defined oligomers containing a single modified base was determined. The results showed that both testes and liver cells of these knockout mice completely lacked activity toward oligonucleotides containing epsilonA and Hx, but retained wild-type levels of activity for epsilonC and 8-oxoG. These findings indicate that (i) the previously identified epsilonA-DNA glycosylase and Hx-DNA glycosylase activities are functions of APNG; (ii) the two structurally closely related mutagenic adducts epsilonA and epsilonC are repaired by separate gene products; and (iii) APNG does not contribute detectably to the repair of 8-oxoG.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|