REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Werner syndrome protein interacts functionally with translesion DNA polymerases."

Kamath-Loeb AS, Lan L, Nakajima S, Yasui A, Loeb LA



Published June 19, 2007 in Proc Natl Acad Sci U S A volume 104 .

Pubmed ID: 17563354

Abstract:
Werner syndrome (WS) is characterized by premature onset of age-associated disorders and predisposition to cancer. The WS protein, WRN, encodes 3' --> 5' DNA helicase and 3' --> 5' DNA exonuclease activities, and is implicated in the maintenance of genomic stability. Translesion (TLS) DNA polymerases (Pols) insert nucleotides opposite replication-blocking DNA lesions and presumably prevent replication fork stalling/collapse. Here, we present in vitro and in vivo data that demonstrate functional interaction between WRN and the TLS Pols, Poleta, Polkappa, and Poliota. In vitro, WRN stimulates the extension activity of TLS Pols on lesion-free and lesion-containing DNA templates, and alleviates pausing at stalling lesions. Stimulation is mediated through an increase in the apparent V(max) of the polymerization reaction. Notably, by accelerating the rate of nucleotide incorporation, WRN increases mutagenesis by Poleta. In vivo, WRN and Poleta colocalize at replication-dependent foci in response to UVC irradiation. The functional interaction between WRN and TLS Pols may promote replication fork progression, at the expense of increased mutagenesis, and obviate the need to resolve stalled/collapsed forks by processes involving chromosomal rearrangements.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.