|
|
"FAVL elevation in human tumors disrupts Fanconi anemia pathway signaling and promotes genomic instability and tumor growth."
|
Zhang J, Zhao D, Park HK, Wang H, Dyer RB, Liu W, Klee GG, McNiven MA, Tindall DJ, Molina JR, Fei P
|
Published May 3, 2010
in J Clin Invest
volume 120
.
Pubmed ID:
20407210
Abstract:
Fanconi anemia (FA) is a rare human genetic disease caused by mutations in any one of 13 known genes that encode proteins functioning in one common signaling pathway, the FA pathway, or in unknown genes. One characteristic of FA is an extremely high incidence of cancer, indicating the importance of the FA pathway in tumor suppression. However, the role of this pathway in the development and progression of human cancers in individuals who do not have FA has not been clearly determined. Here, we report that elevated expression of what we believe to be a novel splice variant of FA complementation group L (FANCL), which we identified and named FAVL, can impair the FA pathway in non-FA human tumor cells and act as a tumor promoting factor. FAVL expression was elevated in half of the human carcinoma cell lines and carcinoma tissue samples tested. Expression of FAVL resulted in decreased FANCL expression by sequestering FANCL to the cytoplasm and enhancing its degradation. Importantly, this impairment of the FA pathway by FAVL elevation provided human cancer cells with a growth advantage, caused chromosomal instability in vitro, and promoted tumor development in a xenograft mouse model. These data indicate that FAVL impairment of the FA pathway likely contributes to the development of non-FA human cancers and therefore add a challenging layer of complexity to the pathogenesis of human cancer. We further believe that these data will prove useful for developing additional tools for fighting human cancer.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|