REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness."

Yeiser B, Pepper ED, Goodman MF, Finkel SE



Published June 25, 2002 in Proc Natl Acad Sci U S A volume 99 .

Pubmed ID: 12060704

Abstract:
Escherichia coli encodes three SOS-induced DNA polymerases: pol II, pol IV, and pol V. We show here that each of these polymerases confers a competitive fitness advantage during the stationary phase of the bacterial life cycle, in the absence of external DNA-damaging agents known to induce the SOS response. When grown individually, wild-type and SOS pol mutants exhibit indistinguishable temporal growth and death patterns. In contrast, when grown in competition with wild-type E. coli, mutants lacking one or more SOS polymerase suffer a severe reduction in fitness. These mutants also fail to express the "growth advantage in stationary phase" phenotype as do wild-type strains, instead expressing two additional new types of "growth advantage in stationary phase" phenotype. These polymerases contribute to survival by providing essential functions to ensure replication of the chromosome and by generating genetic diversity.


This publication refers to following REPAIRtoire entries:



Last modification of this entry: Oct. 7, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.