REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape."

Lin YC, Choi WS, Gralla JD.



Published July 1, 2005 in Nat Struct Mol Biol. volume 12 .

Pubmed ID: 15937491

Abstract:
DNA helicases open the duplex during DNA replication, repair and transcription. However, RNA polymerase II is the only member of its family with this requirement; RNA polymerases I and III and bacterial RNA polymerases open DNA without a helicase. In this report, characterization of XPB mutants indicates that its helicase activity is not used for RNA polymerase II promoter opening, which is instead driven by its ATPase activity. The mutants have parallels in sigma(54) bacterial transcription and this suggests a similar mode of opening DNA for both RNA polymerases, involving ATP-dependent enzyme conformational changes. Promoter escape is defective in these XPB mutants, suggesting that the XPB helicase acts as an ATP-driven motor to reorganize the tightly wrapped multiprotein eukaryotic preinitiation complex during the remodeling that precedes elongation and the coupling to RNA processing events.


This publication refers to following REPAIRtoire entries:

Pathways


Last modification of this entry: Dec. 10, 2008

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.