|
|
"Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1."
|
Kaygun H, Marzluff WF
|
Published Sept. 1, 2005
in Nat Struct Mol Biol
volume 12
.
Pubmed ID:
16086026
Abstract:
Eukaryotic cells coordinately regulate histone and DNA synthesis. In mammalian cells, most of the regulation of histone synthesis occurs post-transcriptionally by regulating the concentrations of histone mRNA. As cells enter S phase, histone mRNA levels increase, and at the end of S phase they are rapidly degraded. Moreover, inhibition of DNA synthesis causes rapid degradation of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is the only cis-acting element required for coupling regulation of histone mRNA half-life with DNA synthesis. Here we show that regulated degradation of histone mRNAs requires Upf1, a key regulator of the nonsense-mediated decay pathway, and ATR, a key regulator of the DNA damage checkpoint pathway activated during replication stress.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|