REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1."

Kaygun H, Marzluff WF



Published Sept. 1, 2005 in Nat Struct Mol Biol volume 12 .

Pubmed ID: 16086026

Abstract:
Eukaryotic cells coordinately regulate histone and DNA synthesis. In mammalian cells, most of the regulation of histone synthesis occurs post-transcriptionally by regulating the concentrations of histone mRNA. As cells enter S phase, histone mRNA levels increase, and at the end of S phase they are rapidly degraded. Moreover, inhibition of DNA synthesis causes rapid degradation of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is the only cis-acting element required for coupling regulation of histone mRNA half-life with DNA synthesis. Here we show that regulated degradation of histone mRNAs requires Upf1, a key regulator of the nonsense-mediated decay pathway, and ATR, a key regulator of the DNA damage checkpoint pathway activated during replication stress.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.