REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"New mutations, polymorphisms, and rare variants in the ATM gene detected by a novel SSCP strategy."

Castellvi-Bel S, Sheikhavandi S, Telatar M, Tai LQ, Hwang M, Wang Z, Yang Z, Cheng R, Gatti RA



Published Jan. 1, 1999 in Hum Mutat volume 14 .

Pubmed ID: 10425038

Abstract:
The gene for ataxia-telangiectasia, ATM, spans about 150 kb of genomic DNA. ATM mutations are found along the entire gene, with no evidence of a mutational hot spot. Using DNA as the starting material, we screened the ATM gene in 92 A-T patients, using an optimized single-strand conformation polymorphism (SSCP) technique that detected all previously known mutations in the polymerase chain reaction (PCR) segments being analyzed. To expedite screening, we sequentially loaded the SSCP gels with three different sets of PCR products that were pretested to avoid overlapping patterns. Many of the DNA changes we detected were intragenic polymorphisms. Of an expected 177 unknown mutations, we detected approximately 70%, mostly protein truncating mutations (that would have been detectable by protein truncation testing if RNA starting material had been available). Mutations have now been defined for every exon of the ATM gene. Herein, we present 35 new mutations and 34 new intragenic polymorphisms or rare variants within the ATM gene. This is the most comprehensive compilation of ATM polymorphisms assembled to date. Defining polymorphic sites as well as mutations in the ATM gene will be of great importance in designing automated methods for detecting mutations.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.