REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates."

Brautigam CA, Steitz TA



Published March 27, 1998 in J Mol Biol volume 277 .

Pubmed ID: 9514742

Abstract:
A two-metal-ion catalytic mechanism has previously been proposed for several phosphoryl-transfer enzymes. In order to extend the structural basis of this mechanism, crystal structures of three single-stranded DNA substrates bound to the 3'-5' exonucleolytic active site of the large fragment of DNA polymerase I from Escherichia coli have been elucidated. The first is a 2.1 A resolution structure of a Michaelis complex between the large fragment (or Klenow fragment, KF) and a single-stranded DNA substrate, stabilized by low pH and flash-freezing. The positions and identities of the catalytic metal ions, a Zn2+ at site A and a Mg2+ at site B, have been clearly established. The structural and kinetic consequences of sulfur substitutions in the scissile phosphate have been explored. A complex with the Rp isomer of phosphorothioate DNA, refined at 2.2 A resolution, shows Zn2+ bound to both metal sites and a mispositioning of the substrate and attacking nucleophile. The complex with the Sp phosphorothioate at 2. 3 A resolution reveals that metal ions do not bind in the active site, having been displaced by a bulky sulfur atom. Steady-state kinetic experiments show that catalyzed hydrolysis of the Rp isomer was reduced only about 15-fold, while no enzyme activity could be detected with the Sp phosphorothioate, consistent with the structural observations. Furthermore, Mn2+ could not rescue the activity of the exonuclease on the Sp phosphorothioate. Taken together, these studies confirm and extend the proposed two-metal-ion exonuclease mechanism and provide a structural context to explain the effects of sulfur substitutions on this and other phosphoryl-transfer enzymes. These experiments also suggest that the possibility of metal-ion exclusion be taken into account when interpreting the results of Mn2+ rescue experiments.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.