REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations."

Pang Q, Prolla TA, Liskay RM



Published Aug. 1, 1997 in Mol Cell Biol volume 17 .

Pubmed ID: 9234704

Abstract:
The MutL protein is an essential component of the Escherichia coli methyl-directed mismatch repair system but has no known enzymatic function. In the yeast Saccharomyces cerevisiae, the MutL equivalent, an Mlh1p and Pms1p heterodimer, interacts with Msh2p bound to mismatch-containing DNA. Little is known of the functional domains of Mlh1p and Pms1p. In this report, we define the Mlh1p and Pms1p domains required for Mlh1p-Pms1p interaction. The Mlh1p-interactive domain of Pms1p is comprised of 260 amino acids near the carboxyl terminus while the Pms1p-interactive domain of Mlh1p resides in the final 212 residues. The two domains are sufficient for Mlh1p-Pms1p interaction, as determined by the two-hybrid assay and by in vitro protein affinity chromatography. Deletions within the domains completely eliminated Mlh1p-Pms1p interaction. Using site-directed mutagenesis, we altered a number of highly conserved residues in the Mlh1p and Pms1p proteins, including some alterations that mimic germline mutations observed for human hereditary nonpolyposis colorectal cancer. Alterations either in the consensus MutL box located in the amino-terminal portion of each protein or in the carboxyl-terminal homology motif of Mlh1p eliminated DNA mismatch repair function but had no effect on Mlh1p-Pms1p interaction. In addition, certain MLH1 and PMS1 mutant alleles caused a dominant negative mutator effect when overexpressed. We discuss the implications of these findings for the structural organization of the Mlh1p and Pms1p proteins and the importance of Mlh1p-Pms1p interaction.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.