REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Human and mouse homologs of the Schizosaccharomyces pombe rad17+ cell cycle checkpoint control gene."

Bluyssen HA, Naus NC, van Os RI, Jaspers I, Hoeijmakers JH, de Klein A



Published Feb. 15, 1999 in Genomics volume 55 .

Pubmed ID: 9933569

Abstract:
The Schizosaccharomyces pombe rad17+ cell cycle checkpoint control gene is required for S-phase and G2/M arrest in response to both DNA damage and incomplete DNA replication. We isolated and characterized the putative human (RAD17Sp) and mouse (mRAD17Sp) homologs of the S. pombe Rad17 (Rad17Sp) protein. The human RAD17Sp open reading frame (ORF) encodes a protein of 681 amino acids; the mRAD17Sp ORF codes for a protein of 688 amino acids. The mRAD17Sp messenger is highly expressed in the testis as a single 3-kb mRNA species. The human RAD17Sp and mRAD17Sp proteins are 24% identical and 46% similar to the S.pombe Rad17Sp protein. Sequence homology was also noted with the Saccharomyces cerevisiae Rad24Sc (which is the structural counterpart of S.pombe Rad17Sp) and structurally related polypeptides from Caenorhabditis elegans, Arabidopsis thaliana, Pyrococcus horikoshii, and Drosophila melanogaster. The degree of conservation between the mammalian RAD17Sp proteins and those of the other species is consistent with the evolutionary distance between the species, indicating that these proteins are most likely true counterparts. In addition, homology was found between the Rad17Sp homologs and proteins identified as components of mammalian replication factor C (RF-C)/activator 1, especially in several highly conserved RF-C-like domains including a "Walker A" motif. Using FISH and analysis of a panel of rodent-human cell hybrids, the human RAD17Sp gene (HGMW-approved symbol RAD17 could be localized on human chromosome 5q13-q14, a region implicated in the etiology of small cell lung carcinoma, non-small-cell lung carcinoma, duodenal adenocarcinoma, and head and neck squamous cell carcinoma. Our results suggest that the structure and function of the checkpoint "rad" genes in the G2/M checkpoint pathway are evolutionary conserved between yeast and higher eukaryotes.


This publication refers to following REPAIRtoire entries:

Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.