REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1."

Boorstein RJ, Cummings A Jr, Marenstein DR, Chan MK, Ma Y, Neubert TA, Brown SM, Teebor GW



Published Nov. 9, 2001 in J Biol Chem volume 276 .

Pubmed ID: 11526119

Abstract:
Purification from calf thymus of a DNA N-glycosylase activity (HMUDG) that released 5-hydroxymethyluracil (5hmUra) from the DNA of Bacillus subtilis phage SPO1 was undertaken. Analysis of the most purified fraction by SDS-polyacrylamide gel electrophoresis revealed a multiplicity of protein species making it impossible to identify HMUDG by inspection. Therefore, we renatured the enzyme after SDS-polyacrylamide gel electrophoresis and assayed slices of the gel for DNA N-glycosylase activity directed against 5hmUra. Maximum enzymatic activity was identified between molecular mass markers 30 and 34 kDa. Protein was extracted from gel slices and subjected to tryptic digestion and analysis by mass spectrometry. Analysis revealed the presence of 11 peptides that were homologous or identical to the sequence of the recently characterized human single-stranded monofunctional uracil DNA N-glycosylase (hSMUG1). The cDNA of hSMUG1 was isolated and expressed as a recombinant glutathione S-transferase fusion protein that was shown to release 5hmUra with 20x the specific activity of the most purified bovine fraction. We conclude that hSMUG1 and HMUDG are the same protein.


This publication refers to following REPAIRtoire entries:

Genes
Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.