|
|
"Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, and cancer in mice."
|
Lebel M, Lavoie J, Gaudreault I, Bronsard M, Drouin R
|
Published May 1, 2003
in Am J Pathol
volume 162
.
Pubmed ID:
12707040
Abstract:
Werner syndrome is a rare disorder characterized by the premature onset of a number of age-related diseases. The gene responsible for Werner syndrome encodes a DNA helicase/exonuclease protein. Participation in a replication complex is among the several functions postulated for the WRN protein. The poly(ADP-ribose) polymerase-1 (PARP-1) enzyme, which is known to bind to DNA strand breaks, is also associated with the DNA replication complex. To determine whether Wrn and PARP-1 enzymes act in concert during cell growth, mice with a mutation in the helicase domain of the Wrn gene (Wrn(Deltahel/Deltahel) mice) were crossed to PARP-1-null mice. Both Wrn(Deltahel/Deltahel) and PARP-1-null/Wrn(Deltahel/Deltahel) cohorts developed more neoplasms than wild-type animals. The tumor spectrum was the same between PARP-1-null/Wrn(Deltahel/Deltahel) mice and Wrn mutants. However, PARP-1-null/Wrn(Deltahel/Deltahel) mice developed neoplasms at a younger age. Mouse embryonic fibroblasts derived from such PARP-1-null/Wrn(Deltahel/Deltahel) mice stop dividing abruptly unlike Wrn(Deltahel/Deltahel) or PARP-1-null cells. PARP-1-null/Wrn(Deltahel/Deltahel) fibroblasts were distinguished by an increased frequency of chromatid breaks, complex chromosomal rearrangements, and fragmentation. Finally, experiments have indicated that the PARP-1 enzyme co-immunoprecipitates with the WRN protein in human 293 embryonic kidney cells. These results suggest that Wrn and PARP-1 enzymes may be part of a complex involved in the processing of DNA breaks.
|
This publication refers to following REPAIRtoire entries:
Last modification of this entry: Oct. 6, 2010
Add your own comment!
There is no comment yet.
|