REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin."

El-Khamisy SF, Katyal S, Patel P, Ju L, McKinnon PJ, Caldecott KW



Published June 4, 2009 in DNA Repair (Amst) volume 8 .

Pubmed ID: 19303373

Abstract:
Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5'-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5'-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5'-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3'-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5'-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3'-termini at a subset of single-strand breaks (SSBs), including those with 3'-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1(-/-)/Aptx(-/-) double knockout quiescent mouse astrocytes compared with Tdp1(-/-) or Aptx(-/-) single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1(-/-) and Tdp1(-/-)/Aptx(-/-) double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1(-/-), Aptx(-/-) or Tdp1(-/-)/Aptx(-/-) astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1.


This publication refers to following REPAIRtoire entries:

Genes


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.