REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
DNA damage
Draw a picture

Bujnicki Lab Homepage

"Zinc binding by the methylation signaling domain of the Escherichia coli Ada protein."

Myers LC, Terranova MP, Nash HM, Markus MA, Verdine GL

Published May 19, 1992 in Biochemistry volume 31 .

Pubmed ID: 1581309

The Escherichia coli Ada protein repairs O6-methylguanine residues and methyl phosphotriesters in DNA by direct transfer of the methyl group to a cysteine residue located in its C- or N-terminal domain, respectively. Methyl transfer to the N-terminal domain causes it to acquire a sequence-specific DNA binding activity, which directs binding to the regulatory region of several methylation-resistance genes. In this paper we show that the N-terminal domain of Ada contains a high-affinity binding site for a single zinc atom, whereas the C-terminal domain is free of zinc. The metal-binding domain is apparently located within the first 92 amino acids of Ada, which contains four conserved cysteine residues. We propose that these four cysteines serve as the zinc ligand residues, coordinating the metal in a tetrahedral arrangement. One of the putative ligand residues, namely, Cys69, also serves as the acceptor site for a phosphotriester-derived methyl group. This raises the possibility that methylation-dependent ligand reorganization about the metal plays a role in the conformational switching mechanism that converts Ada from a non-sequence-specific to a sequence-specific DNA-binding protein.

This publication refers to following REPAIRtoire entries:


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.