REPAIRtoire - a database of DNA repair pathways

Welcome! Click here to login or here to register.
Home
Proteins
DNA damage
Diseases
Homologs
Pathways
Keywords
Publications
Draw a picture
 
Search
 
Links
Help
Contact





Bujnicki Lab Homepage

"A novel protein interacts with the Werner's syndrome gene product physically and functionally."

Kawabe Yi, Branzei D, Hayashi T, Suzuki H, Masuko T, Onoda F, Heo SJ, Ikeda H, Shimamoto A, Furuichi Y, Seki M, Enomoto T



Published June 8, 2001 in J Biol Chem volume 276 .

Pubmed ID: 11301316

Abstract:
Werner's syndrome (WS) is a rare autosomal recessive disorder characterized by premature aging. The gene responsible for WS encodes a protein homologous to Escherichia coli RecQ. Here we describe a novel Werner helicase interacting protein (WHIP), which interacts with the N-terminal portion of Werner protein (WRN), containing the exonuclease domain. WHIP, which shows homology to replication factor C family proteins, is conserved from E. coli to human. Ectopically expressed WHIP and WRN co-localized in granular structures in the nucleus. The functional relationship between WHIP and WRN was indicated by genetic analysis of yeast cells. Disruptants of the SGS1 gene of Saccharomyces cerevisiae, which is the WRN homologue in yeast, show an accelerated aging phenotype and high sensitivity to methyl methanesulfonate as compared with wild-type cells. Disruption of the yeast WHIP (yWHIP) gene in wild-type cells and sgs1 disruptants resulted in slightly accelerated aging and enhancement of the premature aging phenotype of sgs1 disruptants, respectively. In contrast, disruption of the yWHIP gene partially alleviated the sensitivity to methyl methanesulfonate of sgs1 disruptants.


This publication refers to following REPAIRtoire entries:

Genes
Proteins


Last modification of this entry: Oct. 6, 2010

Add your own comment!

There is no comment yet.
Welcome stranger! Click here to login or here to register.
Valid HTML 4.01! This site is Emacs powered. Made with Django.